
Waiter robot based on a line-following robot
platform with computer vision

Bruno Campello Tôrres de Azevedo Teles
Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco
Recife, Brasil

bruno.teles@ufpe.br

Andrea Maria Nogueira Cavalcanti Ribeiro
Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco
Recife, Brasil

andrea.marianogueira@ufpe.br

Aline Victória Cavalcanti Pereira
Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco
Recife, Brasil

aline.cavalcantipereira@ufpe.br

João Marcelo Teixeira
Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco
Recife, Brasil

joao.teixe@ufpe.br

Abstract—Following global automation trends, cargo transport
has also been modernized, creating autonomous solutions capable
of delivering various types of volumes to points of interest.
The restaurant sector has shown increasing interest in applying
such technology, specifically with waiter robots. These robots
can deliver orders to tables quickly and efficiently. The demand
for waiter robots has surged due to the Covid-19 pandemic,
which heightened interest in any technology that reduces human
contact. In this work, a waiter robot proof of concept is presented
using a line-following robot platform capable of finding the
shortest possible path between two points using graph theory.
Path information is obtained through computer vision, and
data transmission between the computer and microcontroller
is performed via Bluetooth. The developed solution met the
expected objectives both in terms of navigation and in the
computer vision component.

Index Terms—Waiter robot, Pololu 3pi, Line Follower, Com-
puter Vision

I. INTRODUCTION

The first robot waiters were already used in 1983 at the
Two Panda Deli restaurant in Pasadena, California, USA [1].
Nicknamed Tanbo R-1 and Tanbo R-2, the robots served
food to customers while telling jokes and playing music.
However, Tanbo R-1 and Tanbo R-2 did not perform their
tasks consistently, dropping food or walking in circles when
police radios were nearby, or slurring words as if drunk when
their batteries were low. Additionally, the costs were high
for the amount of US$ 20,000.00 each and they weighed
approximately 36 kg. It was an initial implementation of such
technology which still proves to be challenged.

Nowadays the exponential growth of technologies allows
more complete, cheaper, lighter, and more robust implementa-
tions. Also the sudden lack of staff and the need to reduce hu-
man contact due to the Covid-19 pandemic restaurants around
the globe began employing robots to serve their customers
[2]–[4].

According to Grace Dickinson [5], other decisive factors
include: robots do not get tired, being able to perform their

function with the same efficiency from the first to the last mo-
ment of the day. Also, waiter salaries are constantly increasing
over time meanwhile the cost of a robotic solution is becoming
more affordable. Furthermore, the robots still act as attractions
for restaurants, attracting curious customers to the business.

This paper propose a robot that would move through a
defined white space with pre-defined black pathways. Each
table had its own indication signal made using a piece of paper.
One side painted red and other green to signalise whether the
robot is being called. The computer vision observes all tables
and sets a path when the indication signal was green. The
recognition was through image processing and then sent to the
robot indicating that the table was calling it. Communication
between the robot and the processing software was enabled
using Bluetooth. The information was transmitted so the robot
would go to the table and then return to a starting point defined
as the kitchen [6].

II. PROPOSED SOLUTION

The paper proposed a prototype of a robot waiter system
capable of obtaining a graph representing the paths to the
tables through computer vision. The data should be transfer to
the robot. Then, the shortest path to the destination table must
be defined. The processing information is done using software
in Python programming language. The code used can be found
in the Github repository created for the project 1.

To develop this project a line-following robot platform was
used. The Pololu 3pi robot is a complete commercial solution
for applications involving line-following robots.Its details will
be discussed below [7].

The robot does not have a way to communicate with other
equipment except through its ISP connector. Therefore, a
Bluetooth module was attached to establish the connection
between the Pololu 3pi and the software running on the
computer.

1https://github.com/brunoctt/Projeto-Micro-PDI

https://github.com/brunoctt/Projeto-Micro-PDI


A. Graph acquisition through computer vision

The graph is obtained using the OpenCV library [8]. This
library is adaptable to various programming languages and
contains several image processing techniques. Due to the
chosen programming language was Python, the library for this
language was used.

The process can be divided into two parts:
• Finding the lines that make up the paths from the input

image;
• Processing the obtained lines and get the graph points.
The line detection procedure starts by obtain an image of the

surface with the paths. The Figure 1.A illustrated an example
using an input photo.

A binary threshold is then applied to the grayscale image.
This way there are only two possible values depending on the
original value and the threshold value. Therefore any unnec-
essary information is removed and the process is simplifying.
Figure 1.B shows this simplification. Although the new image
is easier to analyze, there are still unwanted elements.

After the binary image is acquired, the OpenCV function
findContours is applied. This function returns the contour of
all continuous elements. This is demonstrated in red in Figure
1.C.

However, this image generated has a format that can create
duplicate parallel lines. Also, the returned data make analysis
difficult. Thus, it is not very interesting for this project. To
solve this problem only the largest contour is considered. In
such manner the contour is expanded so that the parallel lines
become a thicker single line. The new processed image is
visible Figure 1.D. This contour image will serve as a mask
to be used later.

The Probabilistic Hough Transform [9] is also applied to the
binary image. This will find the line segments represented as
(xi, yi, xf , yf ). The xi and yi are coordinates of the starting
point, and the xf and yf coordinates of the endpoint of the
segment. The image obtained after the Probabilistic Hough
Transform is seen in Figure 1.E.

To acquire the graph the data format should be a list of
segments. However, the Probabilistic Hough Transform creates
difference between the lines. Therefore, a logical AND filter
is applied. This filter will combine the image obtained after
the largest contours consideration (Figure 1.D) and the image
acquired by the Probabilistic Hough Transform (Figure 1.E).

Finally, the Probabilistic Hough Transform is reapplied on
the image. The result image is simpler and shows fewer than
100 lines. Each segments represent some part of the paths.
Nevertheless, there are still more lines than desired. Thus, an
algorithm2 to identify similar lines and merge them is used.
This strategy is based on the angle and distance between the
lines. After this function is defined a line for each segment of
the path is obtained. The final processed image is illustrated in
Figure 1.F. Only nine lines obtained for the example in Figure
1.A after this process.

2How to merge lines after HoughLinesP?

The following step is to find the intersections of the obtained
lines. The algorithm in Figure 2 is applied. In addition to
returning the intersection points, this algorithm converts all
the lines into Line objects from the Sympy library [10]. This
will be useful for the next steps .

After the acquisition of the intersection points, it is possible
to discover all the destination points, or tables. An endpoint
will never be an intersection. Therefore, it is only necessary
to check if a line contains two intersections or not.

If a line only contains one intersection point, the other point
will be a destination. At the same time the points are found,
their direction are stored. The graph works using cardinal
points as a reference. Thus, above, below, to the left, or to the
right are represented by North, South, West, East, respectively.

All remaining points are connected as well. That establish a
coordinate between points connected by a line. The number of
points connected to a node is then observed to separate those
that have been called auxiliary nodes from auxiliary points.

An auxiliary node is connected to more than two other
nodes. Therefore, it is relevant to the graph acquisition, as
it will be a decision factor. An auxiliary point is nothing more
than a point that connects two lines without other bifurcations,
not being important for routing decisions.

Figure 3 shows all the points found from the image. The
final result of the graph acquired. Nodes 0 to 7 are destination
nodes (tables), nodes 8 to 11 are auxiliary nodes (connected to
more than two other points), and nodes 12 to 15 are auxiliary
points (connected to two other points).

The numbers assigned to the nodes follow only one rule:
the destination nodes are numbered from 0 to n − 1, where
n is the number of destination nodes. The auxiliary nodes are
numbered n to n+m− 1 with m representing the number of
auxiliary nodes. The auxiliary points are numbered n+m to
x for x equal to the total number of points found.

Finally, to transfer the data to the robot waiter, the graph
is transformed into an adjacency matrix. This contains the
relationship between the nodes in cardinal points in the format
readable by the robot.

B. Data transfer to the robot

The data transfer to the robot is the last step. A serial
connection is established via Bluetooth using the pySerial
library [11].

After establishing the connection, the data is transfer to the
robot. Due to the robot waiter programming, the adjacency
matrix information is transferred one by one. The data are
stored in internal adjacency matrix. This way, it is possible to
operate independently of the software.

The transmission time of the coordinates varies according
to the number of connections to be registered. For the test case
of Figure 1.A, twenty-two nodes information were registered
in 34 seconds. Figure 4 shows part of the registration flow. For
example, “0 9 W” indicates that the path from node 0 to node
9 is W, West. Automatically it is registered that the opposite
path, from 9 to 0, is the opposite of W, E (East).

https://stackoverflow.com/a/70318827


Fig. 1. A) Input photo. B) After binary threshold. C) After function findContours. D) After the removal of duplicate parallel lines. E) Result of the
Probabilistic Hough Transform. F) Processed image.

Fig. 2. Algorithm used to find intersection points between the provided
lines.

Subsequently, it is asked if another node information is
desired to be inserted. As long as the software identifies that
there are new information to be registered, it will send “y” for
Yes and register the next it. The Figure 5 illustrated the IDE
for this procedure.

After registering all the nodes information, the robot returns
the list of all the connections made. Figure 5 shows the IDE
terminal for the example. The nodes are indicated in a line.
The path to go from the first to the second.

Finally, the robot’s position is informed. After this pro-
cedure, the code enters a loop. It will request the desired
destination point and send it to the robot, wait for it to arrive
and then asking again. If the user wants to end the program,
just type “q” for Quit, and the program will exit the loop and
finish. To obtain the shortest path search, it is performed a
modified BFS (Breadth-first search) algorithm.

Fig. 3. All points found from the initial image.

III. SIMULATION AND RESULTS

The following tests were conducted:

A. Graph creation from image Test

The graph creation algorithm was executed multiple times.
Different parameters for the minimum angle and minimum
distance between lines were test to ensure there was no
instability in the obtained result.

B. Graph transmission to the robot Test

Following the graph creation test, it was analyzes if the se-
rial connection was successfully established and if all relevant
information was transmitted.



Fig. 4. Part of the activities registered in the IDE (Integrated Development
Environment) terminal where the responses are automatically sent by the

program.

Fig. 5. Part of the activities registered in the IDE terminal when the Pololu
3pi returns the established connections.

C. Path printing between nodes Test

The adjacency matrix was registered and the function that
returns the shortest path for all nodes in the matrix was used
to see if the returned result was as expected.

D. Robot navigation between nodes Test

Similar to the return test, the robot was instructed to go to
all possible points. Many line-following robot projects have
difficulty in some areas where the robot does not navigate
correctly, losing the line or rotating on its axis. After it was
verified if it arrived at the points correctly.

E. Fine-tuning of robot movement Test

Observed during the navigation tests, this test aimed to
verify if the robot corrected its position even with slight
changes in direction.

IV. CONCLUSION

This paper presents a prototype of a waiter robot that would
receive navigation information from software using computer
vision. The robot should find the shortest path from its current
location to the destination point.

The results obtained shown that the main objective of this
work was achieved. The developed system performed all the
proposed activities without notable failures in its behaviors.
A demonstration video of the robot’s operation was recorded
and can be found in [12].

As discussed in the section III, it was not possible to
exhaustively test the system, so its stability for any case cannot
be guaranteed.

Additionally, other activities can be mapped as future work,
including:

• Testing the project with more cases/configurations: Dif-
ferent path configurations can result in unexpected behav-
iors. During the Bluetooth tests, there were occasional
instances where the connection was not successfully
established. A very important test case is in a ”real” but
controlled environment;

• Optimizing codes in Python and Arduino: There were
some redundancies throughout the codes, especially on
the firmware side. It would be interesting to optimize
memory usage, as the current solution has a maximum
number of nodes that can exist;

• The robot’s movement while calibrating its sensors can
sometimes cause it to be slightly displaced from the line;

• Adding an ultrasonic sensor (such as the HC-SR04
model) to avoid collisions.

REFERENCES

[1] G. W. Records, “First restaurant with robot waiting staff.” [Online;
accessed 7-Jan-2023].

[2] UOL, “Florida restaurant turns to robots due to a shortage of waiters
during the pandemic.” [Online; accessed 12-Jul-2024].

[3] O. Digital, “Restaurant in the netherlands uses robot waiter.” [Online;
accessed 12-Jul-2024].

[4] Yahoo, “Restaurants in malaysia employ robots as waiters during the
pandemic.” [Online; accessed 12-Jul-2024].

[5] B. of House, “How do robotic waiters work and are they right for your
restaurant?.” [Online; accessed 7-Jan-2023].

[6] B. Teles, “Apresentação v0 robô garçom.” [Online; accessed 12-Jul-
2024].

[7] Pololu, “3pi robot.” [Online; accessed 13-Jul-2024].
[8] G. Bradski, “The opencv library.,” Dr. Dobb’s Journal: Software Tools

for the Professional Programmer, vol. 25, no. 11, pp. 120–123, 2000.
[9] J. Illingworth and J. Kittler, “A survey of the hough transform,”

Computer vision, graphics, and image processing, vol. 44, no. 1, pp. 87–
116, 1988.

[10] Sympy, “Sympy’s documentation.” [Online; accessed 13-Jul-2024].
[11] Pyserial, “Pyserial documentation.” [Online; accessed 13-Jul-2024].
[12] B. Teles, “Apresentação robô garçom tcc.” [Online; accessed 08-Jan-

2023].


	Introduction
	Proposed Solution
	Graph acquisition through computer vision
	Data transfer to the robot

	Simulation and Results
	Graph creation from image Test
	Graph transmission to the robot Test
	Path printing between nodes Test
	Robot navigation between nodes Test
	Fine-tuning of robot movement Test

	Conclusion
	References

